Probiotics – The key to a well-balanced equine gut

Article by Kerrie Kavanagh

It is no surprise that the health maintenance of the racehorse is a top priority for trainers. And probiotics can be used as a treatment modality to manipulate the gut microbiome to improve or maintain health. Equine studies to date have shown that probiotic strains can offer an advantageous approach to minimising disturbances in the gut microbial populations, repair these deficiencies—should they occur—and re-establish the protective role of the healthy gut microbiome. Other probiotic-associated health benefits include reducing diet-related diseases such as colic and laminitis, preventing diarrhoea, conferring host resistance to helminth infection, improving stress-related behavioural traits (e.g., locomotion) and even promote the development of an effective gut-brain communication pathway. 

Probiotics – The key to a well-balanced equine gut.jpg

Probiotics have been used by humans for more than 5,000 years with their development closely linked to that of dairy products and fermented foods. Today, probiotics are seen as an excellent non-pharmaceutical way to improve the health of both humans and animals, and there are a plethora of products to choose from. But what exactly is a probiotic, and how do they work? Why would your horse need one? What types of probiotics are available for horses? These are all questions that horse trainers ask frequently, which we will attempt to answer here. 

The Equine Gut Microbiome

Gut microbes.jpg

Probiotics and the equine microbiome can benefit from a valuable symbiotic relationship; probiotics are seen as a restorative treatment modality for the gut, to re-establish the bacterial populations there and also to re-establish the protective role that the health gut microbiome confers to the host. But when we discuss the equine microbiome, what are we really talking about? 

The gut microbiota/microbiome can be categorised by anatomical location such as the oral microbiota/microbiome in the mouth and the intestinal microbiota/microbiome in the intestines, etc. Therefore, the gut microbiome pertains to the microbiota in the gastrointestinal tract. This population of microorganisms (bacteria, fungi, viruses, protozoa) is referred to as the ‘microbiota’ of the gut, while the term ‘gut microbiome’ refers to the genetic material associated with these microorganisms. The microbiome can be defined as the sum of the microbes and their genomic elements in a particular environment. If we look at the definition of the microbiome having the propensity to an equation, then any equation must be balanced; to maintain that balance is key. If the microbial community exists in an environment in a balanced state, then any upset or disturbance to the microbial populations will cause the balance to shift (known as dysbiosis). To maintain the balance, we need to firstly understand the way the microorganisms exist within their community (i.e. their microorganism-to-microorganism interactions and also microorganism-to-environment interactions) and secondly, their functioning role. If we can understand their (microorganism) position and role, then we can maintain the balance or re-establish the balance if a shift occurs.  

The human intestinal microbiome is now recognised as an organ and likewise, the equine intestinal microbiome is deemed an ‘organ’ of the body and is vital for the breakdown of complex food and subsequent release of energy, protection against the pathogenic bacterial colonisation and in regulating the immune system and metabolic functions. There has been much debate regarding the content of the healthy equine microbiome, and even to deduce what ‘healthy’ or ‘normal’ is requires a level of understanding of the microbiota associated with healthy horses. This question has been posed by many researchers and frankly has yet to be answered with certainty. There are many reasons why the ‘normal’ microbiota keeps eluding us; and this can be attributed to the many reasons as to why the gut microbiota (of a healthy horse) can be affected (see Figure 1). It is thought that the diversity of the human gut microbiota and the general assembly of microbial communities within the gut (with the dominant phyla being classed as belonging to Firmicutes and Bacteroidetes) is a shared hypothesis across most species (i.e., humans and animals share a similar gut microbiome structure). Firmicutes and Bacteroidetes have been shown to constitute the main dominant phyla in equine, bovine, canine and feline gut microbiome studies indicating the cruciality of the role they play in the maintenance of a healthy microbial ecology in the gastrointestinal tract. Several studies do agree that dominant phyla of the equine gut microbiota are obligate anaerobes: the gram-positive Firmicutes and the gram-negative Bacteroidetes; other phyla are identified as Proteobacteria, Verrucomicrobia, Actinobacteria, Euryarchaeota, Fibrobacteres and Spirochaetes. Ninety-five percent of the  Firmicutes phyla contains the Clostridia genus in addition to genera related to gut health such as Lachnospiraceae, Faecalibacterium and Ruminococcaceae. The other main dominant phyla, Bacteroidetes, on the other hand contains a large variety of the genus. 

Role of the Equine Gut Microbiota

The role of the gut intestinal microbiota serves to protect and prevent disease. The gut microbiota has several purposes: prevention of pathogen colonisation by competing for nutrients, enrichment and maintenance of the intestinal barrier—their ability to renew gut epithelial cells and repair damage to the mucosal barrier, the breakdown of food and releasing energy and nutrients, such as synthesising vitamins D and K and also conserving and restoration of the immune system by the formation of antimicrobial metabolites and blocking access to the binding sites of the mucosal wall. The gut microbiota is also thought to play some role of influencing the neuro-active pathways that affect behaviour. It is not surprising to see that gut disorders and gastrointestinal diseases can arise when gut dysbiosis occurs. The role of the gut microbiota may have even more importance than is realised and may have a role to play with developing illness or disease later in life.

The microbial colonisation of the intestinal tract begins at birth. The foal begins its colonisation through contact with the microbiota of the mare’s vaginal and skin surfaces plus the surrounding environments to which the foal is exposed and reaches a relatively stable population by approximately 60 days in age. It is perhaps a fight for dominance to achieve establishment in the gut among the bacterial populations that sees the foal’s microbiota as being more diverse and quick to change when compared to that of the older horse. The subsequent colonisation of the intestinal tract will reflect the foal’s diet, changing environment, introduction to other animals, ageing and health.

Dysbiosis.jpg

Figure 1: Factors that can lead to gut dysbiosis




What exactly is a probiotic?

The word ‘probiotic’ is of Greek origin meaning ‘for life’ and the WHO/FAO have defined probiotics as ‘live microorganisms which when administered in adequate amounts confer a health benefit on the host’.  People have long believed that exposure to non-pathogenic microorganisms can benefit the health of humans and animals. The thinking behind this is that daily consumption of sufficient numbers of ‘good’ microorganisms (either bacteria or fungi) can maintain a healthy population of microorganisms in the gut and benefit overall health.  

Probiotics are used to manipulate the bacterial populations of the gut in order to re-establish the delicate microbial balance there which, in turn, confers health benefits on the host. As the benefits associated with some of the ‘good’ bacteria within the gut became known, these were referred to as probiotic bacteria. 

How do probiotics work?

There are 4 main mechanisms by which probiotics are thought to exert their effects.

  1. By inhibiting pathogen colonisation in the gut through the production of antimicrobial metabolites or by competitive exclusion; in other words, they prevent the ‘bad’ bacteria from growing in the gut.

  2. By protecting or re-stabilising the commensal gut microbiota, probiotics can be a means to re-establish the balance of the gut microbial populations.

  3. By protecting the intestinal epithelial barrier, they maintain the health of the intestinal wall.

  4. By inducing an immune response, probiotics can boost the immune response and help prevent disease.

If we consider the definition of a probiotic as ‘live non-pathogenic microorganisms that, when administered in adequate amounts, confer a health benefit on the host’, then this reference to ‘adequate amounts’ must be emphasised, and the dose administered is critical to ensure that the probiotic has the desired effect. For horses, we must consider the route through the digestive tract that the probiotic strains must travel to arrive at their destination is a distance over 15 metres long. It is a race for survival! The gastrointestinal system has many obstacles along the passage such as the acidic stomach environment and the dangers of exposure to bile and digestive enzymes, in which they must survive. The initial dose of ‘live’ probiotic strains is therefore crucial to ensure survival in the gut. Prebiotics are ingredients such as carbohydrates and fibre, which promote the growth of these probiotic bacterial/yeast strains in the gut. Prebiotics are essentially the food for the probiotic strains and can help form a symbiotic relationship with the probiotic to improve the overall health status of the horse. 

Why would you need to give your horse a probiotic?

Probiotics – The key to a well-balanced equine gut.jpg

Gut dysbiosis is a fluctuation or disturbance in the population of microorganisms of the gut, which may be linked to a wide range of diseases in horses. Gut dysbiosis can be caused by many factors ranging from dietary changes, antibiotics, disease, intense exercise and training, age, worms, environment, travel, or even minor stress events—resulting in major consequences such as colic. Dysbiosis is generally associated with a reduction in microbial species diversity. 

Diet is one of the major factors contributing to gut dysbiosis. Unlike the ruminant cattle and sheep that use foregut fermentation, horses are hindgut fermenters. The large intestine is the main area where fermentation occurs. The horse utilises the microbial enzymes of the hindgut microbial population in the colon and caecum to break down the plant fibres (cellulose fermentation) sourced mainly from grasses and hay. The horse itself does not possess the hydrolytic enzymes that are required to break the bonds of the complex structures of the plant carbohydrates (in the form of celluloses, hemicelluloses, pectins) and starch; so therefore, it strongly relies on the microbiota present to provide those critical enzymes required for digestion. The main phyla Firmicutes and Bacteroidetes possess enzymes capable of breaking down the complex carbohydrates (such as starch and cellulose).

Research has shown that forage-based diets (grasses and hay) promote the most stable gut microbiomes, but ultimately the equine athlete requires far more energy than a forage-based diet can supply. Supplementing the diet with concentrates containing starch such as grain, corn, barley and oats can affect the number and type of bacteria in the gut. Optimising diet composition is so important as carbohydrate overload—as seen with high-starch diets (>1g/kg body weight per meal)—can change the populations of bacteria in the gut, alter pH, upset digestion and the gut environment, and ultimately result in diseases such as colitis, colic and laminitis. The correct diet is essential for maintaining the delicate balance of bacterial populations. Probiotics can be used to either replace the bacteria missing in the gut and/or can help maintain the delicate microbial balance even in the face of adversity such as abrupt dietary changes, antibiotic treatment and stress.

What types of probiotics are available for horses?

There are several probiotic products on the market, and most are in powder or liquid form. There are two main categories of probiotics: generic and autogenous. Generic probiotics are off-the-shelf products that contain specific strains of bacterial or yeast, singularly or in combination. The Lactobacillus and Bifidobacterium families, Enterococci and yeasts such as Saccharomyces cerevisae and boulardii are the most common equine probiotic strains. Advantages of generic probiotics are that they are widely available, easy to administer, and they may be beneficial to horse health (if the strains are alive in sufficient numbers). Autogenous probiotics are specifically formulated using bacteria obtained from the horse’s own faecal sample and, as such, are uniquely adapted to that individual animal. These host-adapted bacteria are more likely to survive in the gut than non-adapted generic strains and can quickly replenish absent or low levels of bacteria unique to the individual horse, thus maintaining health.

Feeding probiotics.jpg

Can nutrition influence EIPH? - alternative and supportive therapies as trainers seek to find other means of reducing the risk or severity of EIPH

EIPH (exercise-induced pulmonary haemorrhage) was first identified in racehorses in the 16th century. Since this time, the focus has been on mitigating the haemorrhage. Management of EIPH largely revolves around the use of furosemide, dependent of jurisdiction, may or may not be used on the day of racing. Alternative and supportive therapies are becoming increasingly popular as trainers seek to find other means of reducing the risk or severity of EIPH.Nutrition and plant-based approaches are part of an alternative management program. Whilst research is somewhat limited, the studies available are promising, and no doubt more work will be done as using furosemide becomes more restricted. There are several directions in which nutrition can influence risk for EIPH, including inflammatory response, blood coagulation, cell membrane structure, hypotension and reducing known lung irritants.The various approaches are all supportive, working on altering an element of risk associated with the condition. Some are more direct than others, focusing on the effect on red blood cells, whilst others work on some of the broader lung health issues such as reducing mucus or environmental irritants.None are competitive with each other, and there may be an advantage to a ‘cocktail’ approach where more than one mode of action is employed. This is a common practice with herbal-based supplements where the interactive effects between herbs are known to improve efficacy.Cell membraneThe red blood cell membrane—the semipermeable layer surrounding the cell—is made up of lipids and proteins. The makeup of this membrane, particularly the lipid fraction, appears to be modifiable in response to dietary fatty acids. Researchers feeding 50mls of fish oil found a significant increase in the percentage of omega-3’s in the cell membrane.Essential fatty acids (EFA’s), omega 3 and omega 6, are important cell membrane components and determine cellular membrane fluidity. Fluidity of a cell membrane is important, particularly when pressure increases, as a cell membrane lacking in fluidity is more likely to break. A cell that can deform, effectively changing rather than breaking, has an advantage and is linked with improved exercise performance in human studies. Inclusion of fish oil in the diet increases the ability of red blood cells to deform.Kansas State University investigated the effect of omega supplementation on 10 thoroughbreds over a five-month period. The diet was supplemented with either EPA and DHA combined, or DHA on its own. EPA (eicosapentaenoic acid) and DHA (docosahexaenoic acid) are specific forms of omega-3 fatty acids commonly found in oily fish. When supplementing the diet with both EPA and DHA, a reduction in EIPH was seen at 83 days and again at 145 days. Feeding DHA on its own did not produce an effect.Fish oil contains both EPA and DHA and is readily available, although the smell can be off-putting to both horse and human. There are flavoured fish oils specifically designed for use in horses that overcome the aroma challenge and have good palatability.Inflammatory response and oxidative stressAirway inflammation and the management of this inflammatory process is believed to be another pathway in which EIPH can be reduced. Omega-3 fatty acids are well evidenced for their effect in regulation of inflammation, and this mode of action along with effect on cell membrane fluidity is likely part of the positive result found by Kansas State University.Kentucky Equine Research has investigated the effect of a specific fish oil on inflammatory response with horses in training. The study supplemented test horses with 60mls per day and found a significant effect on level of inflammation and GGT (serum gamma-glutamyl transferase). GGT is an enzyme that breaks down glutathione, an important antioxidant. As GGT rises, less glutathione is available to neutralise damaging free radicals, creating an environment for oxidative stress.A horse’s red blood cells are more susceptible to oxidative stress than humans, and maintaining a healthy antioxidant status is important for function and maintenance of cell integrity.Supplements for bleeders will often contain relatively high doses of antioxidants such as vitamin C and vitamin E to support antioxidant status in the horse and reduce risk of damage to cell membranes. Vitamin C has also been shown to benefit horses with recurrent airway obstruction and increase antibody response. Dose rates required for an effect range from 15-20g per day. If including high doses of vitamin C in the diet, it is important to note that any sudden withdrawal can have negative effects. Gradual withdrawal is needed to allow the body’s own mechanisms for vitamin C production to recognise and respond to the change in status.Rosehips are natural potent antioxidants containing many active substances. Research into the effect of rosehips specifically on red blood cells has shown they have a high efficacy when assessing their ability to ameliorate cell damage.Note – dreamstime image of rosehip berries as an exampleHypotensive herbsThe essential oil of caucus carota species is a well-documented oil having a hypotensive, lowering of blood pressure effect along with antifungal properties. Its antifungal effects are noted against aspergillus species, a common cause of poor respiratory health. Allium sativum is also well known for its ability to lower blood pressure. An initial study (data unpublished) into the effects of these two plants along with herbs reported to alleviate mucus in the lungs has shown promising results in a group of horses in training.Image idea – wild carrot plantProlonged blood coagulationAs prolonged blood coagulation is cited as a possible factor for EIPH, herbal products that are noted for their ability to enhance coagulation are in certain parts of the world widely used as part of managing EIPH.It is believed that increased clotting time during exercise-induced injury may exacerbate the severity of EIPH as a result of the delayed sealing of damaged micro vessels. This effect, where exercise diminishes the ability of equine platelets to respond to platelet aggregating factors, occurs in both horses known with EIPH and those with no history or apparent presence of EIPH.Pop out text boxPlatelet = synonymous with thrombocytes, a component of blood whose function is to stop bleeding by clumping and clotting blood vessel injuries.Aggregating factor = substances such as adenosine diphosphate, collage and platelet activating factor involved in triggering and mediating the clotting process.Researchers at Kansas State University have investigated two herbs for efficacy on severity of EIPH with a small number of thoroughbreds. The two herbs considered were notoginseng and bletillae. Both herbs are documented to reduce thrombin time, which relates to the time taken to form clots, and to reduce bleeding time. The study of five horses showed no effect in terms of severity of bleeding or preventing bleeding based on bronchoalveolar lavage (BAL) results. This may indicate that impaired haemostasis—the ability to stop blood flow—was not the primary cause of EIPH or that the herbs were not effective in addressing coagulation as a problem.Studies of both known bleeders and those without a history of bleeding have shown that all horses when strenuously exercised will experience some degree of bleeding. With this in mind, the coagulation theory is debated as to whether it is a primary factor in EIPH. It is difficult to prove conclusively that impaired coagulability exists in exercising horses for a number of reasons, including timing of sampling and how the body adapts through increased fitness and exercise intensity. Without specific and more conclusive evidence available, use of such herbs becomes a field study—a case of trying and seeing first hand whether an impact is made.Pop out text boxThrombin = an enzyme found in blood plasma which causes the clotting of blood.AmmoniaAmmonia is a known respiratory irritant linked with poor respiratory health. Exposure to ammonia results in increased mucin production and reduced pulmonary clearance. Excess protein intake in the diet increases nitrogen presence in urine and faeces, which can be volatilised to ammonia.To understand protein intake, it is necessary to analyse forage and calculate contribution alongside any hard feed or straights. Excessive protein can also impact performance by causing changes in blood pH. A shortage of protein is equally detrimental, and dropping down to a lower protein feed should only be considered once the total contribution is understood. The majority of horses in training will receive above the base requirement for protein, and in moderation over-provision can have its advantages, such as improved recovery and refuelling of muscle. It is important to understand the difference between an elevated intake and an excessive intake.Image – racehorse barn / stabled racehorsePop out text boxPulmonary clearance = the ability of cells within the lungs to propel mucus and debris upwards and out of the lungs.SummaryThere is a role for nutrition and plant-based therapies in management of EIPH with strong evidence as their effects on cell membranes, regulation of inflammation, ability to reduce bleeding time and hypotensive effects. The balance of dietary protein is also a factor when considering how to manage general respiratory health, which in turn plays a role in managing the risk of EIPH.Getting the best result for horses suffering with EIPH will involve a cocktail approach reviewing the diet and supplements as a whole. Assessing total protein intake and including fish oil, containing both EPA and DHA, are two easy practices to put in place. Targeted use of antioxidants, hypotensive herbs, coagulative herbs and those involved in mucus clearance can then be built around the base diet changes.The aim of such practices is to reduce the severity and frequency of bleeding so that the limitations that EIPH has on performance are reduced. Nutritional and plant-based approaches require a period of adaptation, with some studies noting effects only after a month of use, and so patience and planning are required. For known bleeders, ideally all dietary practices and supplements should be put in place as soon as the horse returns from a holiday period, rather than waiting for full work to commence or for a serious incidence of EIPH to occur.Reading ListAlves-Silva,J.M., Zuzarte,M. Gonclaves,M.J. Cavaleiro,M.T.C., Cardoso,S.M., Salguerio,L. (2016). New claims for wild carrot (daucus carota subsp. carota) essential oil. Evidence-Based Complementary and Alternative Medicine.Epp,T.S, McDonagh,P. Padilla,D.J., Cox,J.H., Poole,D.C., Erickson,H.H. (2004). The effect of herbal supplementation on the severity of exercise-induced pulmonary haemorrage. Equine and Comparative Exercise Physiology 2(1): 17-25Erickson,H.H., Epp,S.T. Poole,D.C.(2007) Review of Alternative Therapies for EIPH. AAEP Proceedings (7)Geor,J. Harris,P. Coenen,M. (2013) Equine Applied and Clinical Nutrition. China: ElsevierPortier,K., De Moffarts,B., Fellman,N., Kirschvnik,N., Motta,C., Letellier,C., Ruelland,A., Van Erck,E., Lekeux,P., Coudert,J. (2006). Equine Veterinary Journal Supplement, Equine Exercise Physiology 7.Widen,C. Ekholm,A., Coleman,M.D., Renvert,S., Rumpunen,K. (2012). Erythrocyte Antioxidant Protection of Rose Hips (Rosa spp.). Oxidative Medicine and Cellular Longevity.

By Catherine Rudenko

EIPH (exercise-induced pulmonary haemorrhage) was first identified in racehorses in the 16th century. Since this time, the focus has been on mitigating the haemorrhage. Management of EIPH largely revolves around the use of furosemide, dependent of jurisdiction, may or may not be used on the day of racing. Alternative and supportive therapies are becoming increasingly popular as trainers seek to find other means of reducing the risk or severity of EIPH.

Nutrition and plant-based approaches are part of an alternative management program. Whilst research is somewhat limited, the studies available are promising, and no doubt more work will be done as using furosemide becomes more restricted. There are several directions in which nutrition can influence risk for EIPH, including inflammatory response, blood coagulation, cell membrane structure, hypotension and reducing known lung irritants.

Screenshot 2020-10-24 at 11.44.12.png

The various approaches are all supportive, working on altering an element of risk associated with the condition. Some are more direct than others, focusing on the effect on red blood cells, whilst others work on some of the broader lung health issues such as reducing mucus or environmental irritants. 

None are competitive with each other, and there may be an advantage to a ‘cocktail’ approach where more than one mode of action is employed. This is a common practice with herbal-based supplements where the interactive effects between herbs are known to improve efficacy. 

Cell membrane

The red blood cell membrane—the semipermeable layer surrounding the cell—is made up of lipids and proteins. The makeup of this membrane, particularly the lipid fraction, appears to be modifiable in response to dietary fatty acids. Researchers feeding 50mls of fish oil found a significant increase in the percentage of omega-3’s in the cell membrane.

Essential fatty acids (EFA’s), omega 3 and omega 6, are important cell membrane components and determine cellular membrane fluidity. Fluidity of a cell membrane is important, particularly when pressure increases, as a cell membrane lacking in fluidity is more likely to break. A cell that can deform, effectively changing rather than breaking, has an advantage and is linked with improved exercise performance in human studies. Inclusion of fish oil in the diet increases the ability of red blood cells to deform.

Kansas State University investigated the effect of omega supplementation on 10 thoroughbreds over a five-month period. The diet was supplemented with either EPA and DHA combined, or DHA on its own. EPA (eicosapentaenoic acid) and DHA (docosahexaenoic acid) are specific forms of omega-3 fatty acids commonly found in oily fish. When supplementing the diet with both EPA and DHA, a reduction in EIPH was seen at 83 days and again at 145 days. Feeding DHA on its own did not produce an effect.

Fish oil contains both EPA and DHA and is readily available, although the smell can be off-putting to both horse and human. There are flavoured fish oils specifically designed for use in horses that overcome the aroma challenge and have good palatability. 

Inflammatory response and oxidative stress

Kentucky Equine research results

Kentucky Equine research results

Airway inflammation and the management of this inflammatory process is believed to be another pathway in which EIPH can be reduced. Omega-3 fatty acids are well evidenced for their effect in regulation of inflammation, and this mode of action along with effect on cell membrane fluidity is likely part of the positive result found by Kansas State University. 

Kentucky Equine Research has investigated the effect of a specific fish oil on inflammatory response with horses in training. The study supplemented test horses with 60mls per day and found a significant effect on level of inflammation and GGT (serum gamma-glutamyl transferase). GGT is an enzyme that breaks down glutathione, an important antioxidant. As GGT rises, less glutathione is available to neutralise damaging free radicals, creating an environment for oxidative stress.

A horse’s red blood cells are more susceptible to oxidative stress than humans, and maintaining a healthy antioxidant status is important for function and maintenance of cell integrity.

Rosehip

Rosehip

Supplements for bleeders will often contain relatively high doses of antioxidants such as vitamin C and vitamin E to support antioxidant status in the horse and reduce risk of damage to cell membranes. Vitamin C has also been shown to benefit horses with recurrent airway obstruction and increase antibody response. Dose rates required for an effect range from 15-20g per day. If including high doses of vitamin C in the diet, it is important to note that any sudden withdrawal can have negative effects. Gradual withdrawal is needed to allow the body’s own mechanisms for vitamin C production to recognise and respond to the change in status.

Rosehips are natural potent antioxidants containing many active substances. Research into the effect of rosehips specifically on red blood cells has shown they have a high efficacy when assessing their ability to ameliorate cell damage.

Hypotensive herbs

Caucus carota – wild carrott

Caucus carota – wild carrott

The essential oil of caucus carota species is a well-documented oil having a hypotensive, lowering of blood pressure effect along with antifungal properties. Its antifungal effects are noted against aspergillus species, a common cause of poor respiratory health. Allium sativum is also well known for its ability to lower blood pressure. An initial study (data unpublished) into the effects of these two plants along with herbs reported to alleviate mucus in the lungs has shown promising results in a group of horses in training. 

Prolonged blood coagulation

As prolonged blood coagulation is cited as a possible factor for EIPH, herbal products that are noted for their ability to enhance coagulation are in certain parts of the world widely used as part of managing EIPH. …

CLICK HERE to return to issue contents

ISSUE 58 (PRINT)

$6.95

ISSUE 58 (DIGITAL)

$3.99

WHY NOT SUBSCRIBE?

DON'T MISS OUT AND SUBSCRIBE TO RECEIVE THE NEXT FOUR ISSUES!

Four issue subscription - ONLY $24.95

IF YOU LIKE THIS ARTICLE

WHY NOT SUBSCRIBE - OR ORDER THE CONTENT FROM THIS ISSUE IN PRINT?

The Balancing Act - feed - supplement

Screenshot 2020-06-12 at 15.34.03.png

By Catherine Rudenko

Key considerations when reviewing what you feed and if you should supplement

With so many feeds and supplements on the market, the feed room can soon take on the appearance of an alchemist’s cupboard. Feeding is of course an artform but one that should be based on sound science. In order to make an informed decision, there are some key questions to ask yourself and your supplier when choosing what ingredients will form your secret to success.

QUESTION #1: What is it?

Get an overview of the products’ intended use and what category of horse they are most suited for. Not every horse in the yard will require supplementing. Whilst one could argue all horses would benefit from any supplement at some level, the real question is do they need it? Where there is a concern or clinical issue, a specific supplement is more likely warranted and is more likely to have an impact. A blanket approach for supplements is really only appropriate where the horses all have the same need (e.g., use of electrolytes).

QUESTION #2: Is it effective?

There are many good reasons to use supplements with an ever-increasing body of research building as to how certain foods, plants or substances can influence both health and performance. Does the feed or supplement you are considering have any evidence in the form of scientific or clinical studies? Whilst the finished product may not—in a branded sense—be researched, the active components or ingredients should be. Ideally, we look for equine-specific research, but often other species are referenced, including humans; and this gives confidence that there is a sound line of thinking behind the use of such ingredients. Having established if there is evidence, the next important question is, does the feed or supplement deliver that ingredient at an effective level? For example, if research shows 10g of glucosamine to be effective in terms of absorption and reaching the joint, does your supplement or feed—when fed at the recommended rate—deliver that amount?

There is of course the cocktail effect to consider, whereby mixing of multiple ingredients to target a problem can reduce the amount of each individual ingredient needed. This is where the product itself is ideally then tested to confirm that the cocktail is indeed effective.

QUESTION #3: How does it fit with my current feeding and supplement program?

All too often a feed or supplement is considered in isolation which can lead to over-supplementing through duplication. Feeds and supplements can contain common materials, (i.e., on occasion there is no need to further supplement or that you can reduce the dose rate of a supplement). Before taking on any supplement, in addition to your current program, you first need to have a good understanding of what is currently being consumed on a per day basis. This is a different matter of comparing one feed tag or supplement pot to another one. Such ‘direct’ comparisons are rarely helpful as dose rates or feeding rates differ, and the manner in which units are expressed is often confusing. Percentages, grams, milligrams and micrograms are all common units of measure used on labeling. The unit chosen can make an inclusion sound significant when perhaps it is not. For example, 1g could be expressed as 1,000mg. Looking at the contribution, any feed or supplement made on an as-fed basis is the only way to know the true value for the horse. There are many categories of supplements in the market with the greatest cross-over existing around use of vitamins or minerals, which appear in both feeds and supplements. Occasionally feeds can also be a source of ingredients used in digestive health supplements or joint supplements. The contribution of your chosen feed(s) is the base from which you decide what, if any, of those matching nutrients or ingredients should be added to. Common areas for cross-over include vitamin E, selenium, B vitamins, iron, magnesium, calcium, phosphorus, zinc and copper. Duplication may also occur around use of vitamin C (antioxidant), FOS (prebiotic), MOS (pathogen binder), yeast (prebiotic) and occasionally maerl (marine algal calcium source).

Vitamins and Minerals An often-seen addition to the feed program for Thoroughbreds are bone supplements—providing relevant minerals such as calcium, phosphorus, zinc and copper. Whilst unquestionably important for sound skeletal development these nutrients are also present in feed, albeit at slightly varying levels by brand. Below is a typical profile of a bone supplement with the information as seen per kilogram on the feed label. Calcium and phosphorus are given as percentages on labels and require converting to grams when looking to calculate the amount of nutrients consumed. In this example, the calcium content is 20%, equivalent to 200g per kilogram.

Screenshot 2020-06-12 at 15.28.34.png

The feeding rate is 31⁄2oz per horse per day. …

CLICK HERE to return to issue contents

BUY THIS ISSUE IN PRINT OR DOWNLOAD

ISSUE 56 (PRINT)

$6.95



ISSUE 56 (DIGITAL)

$3.99


WHY NOT SUBSCRIBE?

DON'T MISS OUT AND SUBSCRIBE TO RECEIVE THE NEXT FOUR ISSUES!

Four issue subscription - PRINT & ONLINE - ONLY $24.95




IF YOU LIKE THIS ARTICLE

WHY NOT SUBSCRIBE - OR ORDER THE CONTENT FROM THIS ISSUE IN PRINT?