Bacterial gut diversity - new research!

Words Alysen Miller

The link between a healthy gut and overall health in both humans and equines has long been promoted by scientists and veterinarians.

Now a new study by the University of Surrey provides the clearest link yet between gut health and athletic performance in Thoroughbred racehorses, and identifies a “critical window” for immunological development which may provide owners and trainers with a glimpse into a racehorse’s future success on the track.

The study, published in the journal Scientific Reports, found that the composition of gut bacteria at just one month old can predict future athletic performance – measured by BHA official ratings (OR), earnings and placings – with a greater diversity of gut bacteria associated with better performance metrics. The study also found that foals with lower bacterial diversity at just 28 days old had a significantly higher risk of respiratory diseases and even soft tissue injuries later in life.

The study’s lead, Professor Chris Proudman, has dedicated his career to equine gastrointestinal health; first as a veterinary surgeon specialising in the clinical management of colic cases and latterly as head of the University of Surrey’s School of Veterinary Medicine. Since stepping down as Head of School last year, he now devotes his time to horse gut research. “I’ve got a small group of people investigating various aspects of intestinal health in horses, particularly around bacterial populations associated with health and disease,” he tells Trainer Magazine. The latest study is the culmination of more than a decade’s worth of research into the influence of gut bacteria on the development of immunological competence and susceptibility to disease. “I was aware of emerging evidence in the human field to suggest that these early life gut bacteria are really important in priming the immunological system and effectively setting up humans or animals for a healthy life in the future,” he says. “So with funding from ALBORADA Trust [the study’s sponsor], this was an opportunity to look in more detail at the impact of early life experiences in foals.”

So how does gut bacterial community structure in the first few months of life predict the risk of specific diseases and athletic performance in racehorses? To answer that question, Professor Proudman and his team performed DNA sequencing on faecal samples from 52 Thoroughbred foals born across five stud farms in 2018. These samples were collected at nine sample points within the first year of the foals’ lives: at 2, 8, 14, 28, 60, 90, 180, 272 and 365 days old. In addition, weekly written or verbal health updates were obtained for all horses reporting any veterinary investigation or treatment for orthopaedic, soft tissue, respiratory or gastrointestinal disease or injury. The researchers then compared this with the horses’ athletic performances at 2 and 3 years old: finishing position and OR were obtained after every race start, while total prize money earnings and cumulative performance metrics (total starts, total placings, total wins) were collected for all race starts until the end of December 2021.

The findings were striking. Not only did researchers observe that the athletic performance of the foals was positively associated with higher faecal bacterial diversity at just one month old, they also identified that a higher abundance of the bacteria Anaeroplasmataceae was associated with a higher OR, and increased levels of the bacteria Bacillaceae at 28 days old were linked to higher race placings. “We weren’t necessarily expecting to see [a correlation between gut health and performance], so the fact that early life gut bacteria influenced athletic performance came as a bit of a surprise to us,” admits Professor Proudman. “But it is consistent with the whole picture around health,” he continues. Professor Proudman is hesitant to attribute too much importance to the precise identity of the bacteria that were present: “I think what is probably more important is what those bacteria are doing, the mechanism by which those bacteria are affecting the animal, and we don’t understand that at the moment,” he suggests. The two different bacteria identified “could potentially be doing the same thing or they could be doing different things,” he continues. “It’s just an indication that there are bacteria that have a beneficial effect.” Further study is planned to try to identify in more granular detail the precise bacteria that are important to a horse’s performance. Nevertheless, the findings are the best evidence to date of a causal link between gut health and athletic aptitude: “This is really hard science that there are measurable beneficial effects both in terms of health and in terms of performance associated with diversity of the gut bacteria, and also with species of bacteria if they are present at this very early stage in life,” says Professor Proudman.

The concept of a “critical window” for immunological development is not new. Many lines of evidence point to the existence of such a period, during which time the immune system can be “trained” to tolerate particular microbes, and thus avoid later destructive immunopathology associated with these same microbes. While the window has been demonstrated in laboratory animals, “humans studies haven’t really been able to nail down the time period,” says Professor Proudman. “Most of the human studies state that it’s somewhere between birth and weaning,” he continues. “That’s a window of about 6-8 months for a lot of human babies. Because we were able to sample our foals very frequently during the first six months of life, we’ve been able to identify with a reasonable degree of accuracy a critical window for performance that happens very, very early – the first 28 days,” says Professor Proudman. Again, Professor Proudman is cautious about drawing a hard line at the 28-day mark: “I wouldn’t obsess about 28 days exactly – I think this is just telling us there’s something really early in life, in the first few weeks, which is the critical period,” he says.

It is not only future athletic performance which is determined within this critical window; higher bacterial diversity at 28 days old was significantly associated with a reduced risk of respiratory diseases later in life. “It’s likely that what we’re looking at here is the process of immunological priming,” explains Professor Proudman. Immunological priming is the process by which a host improves its immune defences following an initial pathogenic exposure, leading to better protection after a subsequent infection with the same – or different – pathogens. Or to put it another way: “When the horse (or any animal) is first born, the body has to learn to recognise the difference between the ‘self’ and the ‘non-self’ – the potential organisms, bacteria and viruses that are trying to invade the animal. And then it learns to fight those off,” explains Professor Proudman. “But there’s an initial learning period – this so-called period of immunological priming – and it seems that bacterial composition of the gut is important because the gut is a really important interface between the animal and the external environment,” he continues. “And that’s where this immunological priming takes place.

“This is the area in which most of the human research has been done, particularly around respiratory disease. And there’s really good evidence in both human and animal models that the gut microbiota have a significant impact on the development of the early immune system very early in life. So it’s highly likely, although we didn’t look at it specifically in our study, that this is an immunological effect that we’re seeing.”

Researchers also identified a positive association between the abundance of the particular bacteria Streptococcaceae and Moraxellaceae and the risk of soft-tissue health events such as infected wounds, cellulitis and abscesses. “There are specific bacteria that we know cause soft tissue infections,” explains Professor Proudman. “And again, it’s that resistance to bacterial infection that is mediated by the immune system.”

But where do these bacteria come from, and what could the answer mean for the way racehorses are bred and reared? The answer appears to be partly nature and partly nurture. Your gut is full of trillions of bacteria and other microbes help you digest food and support immune, heart and brain health. These are known collectively as the microbiome. It has long been thought that foals (and humans) are first exposed to microbes when they pass through their mother’s birth canal. However, evidence from human studies suggests that babies may come into contact with some microbes while inside the womb. A follow-on study by Professor Proudman’s team, scheduled to commence in early 2025, aims to identify where exactly the bacteria come from by tracking pairs of mares and their foals. But for now, “it’s a question that we don’t currently have an answer to,” concedes Professor Proudman. “People have had theories and you can make plausible explanations of where they might come from. Extrapolating from humans, the suggestion is that a lot of those bacteria actually come from faecal contamination of the foal by the mother. But there’s some really intriguing evidence around breast milk, for example.”

Certainly, the gut microbiome continues to diversify as the foal matures, suggesting environmental factors play a role. This includes the food they eat as well as factors such as whether antibiotics are administered. Ah, antibiotics. The epidemiological elephant in the room. Any discussion around antibiotics inevitably leads back to antibiotic resistance. Also known as antimicrobial resistance (AMR), antibiotic resistance is when bacteria change so antibiotic medicines can't kill them or stop their growth. This makes certain bacterial infections difficult to treat. AMR is caused by the misuse and overuse of antimicrobials in humans, animals and plants. The World Health Organisation has identified AMR as one of the top global public health and development threats. (It is estimated that bacterial AMR was directly responsible for 1.27 million global deaths in 2019 and contributed to 4.95 million deaths.) So what does this have to do with racehorses? Professor Proudman’s team also investigated the long-term impact of foals receiving antibiotics during the first month of life. It was found that these foals had significantly lower faecal bacterial diversity at 28 days old compared to other foals who did not receive such treatments. Further analysis revealed that these foals won significantly lower prize money earnings (an indicator of athletic performance) in their subsequent racing careers. In addition, foals who received antibiotics during their first 28 days of life had a significantly increased rate of developing a respiratory disease compared to their counterparts.

While the study does not necessarily demonstrate causality, “we can demonstrate an association between an event, in this case the composition of the microbial community in the gut and a downstream outcome which is either a health related event, or performance,” explains Professor Proudman. “We go to pains in the paper to say we can’t prove that it’s causal,” he emphasises. “However, as we say in the paper, we do believe that a causal association is a credible interpretation of our data. And one of the strongest reasons for this is simply the timeline. We’ve got something happening early in the animal’s life that is then leading to something that happens much later on in the animal’s life. A plausible explanation is that the antibiotics are hitting the gut bacterial population, disrupting it, and then that, in turn, is disrupting immunological development, which leads to an animal that is more susceptible to respiratory disease.”

While it is recognised that antibiotics play a vital role in treating infections and protecting the long-term health of foals, Professor Proudman is clear that they need to be used responsibly: “[AMR] can develop in animals and then transfer to humans and vice versa. So it helps everybody to minimise the use of antibiotics. Even accepting that some foals need to have antibiotics for medical reasons, if there’s something we can do to minimise the damage that those antibiotics do to gut bacteria, that's the question we’re asking.”

So what are the implications of this research for the racing and breeding industries? “I suspect the gut microbiome is only part of the story,” says Professor Proudman. “There are lots of other factors [that contribute to a horse’s health and performance], such as genetics, environment, and its response to training. I don’t think we are anywhere near a situation yet where we’ll be able to screen horses for potential on the basis of their bacterial communities,” he says. “However, I think there are some really simple things that the racing industry and, in particular, the breeding industry could take on board which could help them.” To that end, a follow-on study, funded by the Horserace Betting Levy Board, will look for potential probiotic bacteria that can be fed to foals in the form of feed supplements that will then colonise their intestine and produce beneficial effects. “In the same way that you could go to the supermarket and get yoghurt with probiotic bacteria in them, we’re identifying bacteria which might do the same thing for horses; in particular, for foals,” explains Professor Proudman. His team is already working with various players in the feed and supplement industries. “There might be some new products in development within the next few years directly arising from this research,” he hints.

“The Thoroughbred breeding industry is very traditional,” Professor Proudman continues. “And I think there probably has been an under-recognition of the genetic contribution of gut bacteria to foals’ health and ultimately their performance. It’s quite theoretical at the moment and we need to explore it in more detail. But certainly I think in the future, if stud farms have mares that have good, healthy gut bacteria, we think that’s going to be passed on to foals. So, it’s another aspect of racehorse genetics that has value as a commercial proposition.”

Reducing Wind Surgeries in Thoroughbreds: Harnessing Field Data for Genetic Selection

Article by Dr Erwin Koenen and Richard Birnie

Wind Surgery (WS), also known as ‘wind operations’ or ‘wind ops’, is a term used to describe a collection of surgeries performed on the upper respiratory tract (URT) of the horse, typically the larynx (throat). These surgeries aim to alleviate conditions that cause obstruction of airflow and, therefore, limit oxygen supply to exercising muscles, impacting athletic performance. 

Although WS is generally an effective treatment of upper airway conditions, there is growing interest in curbing them for both animal welfare and financial reasons. For many years, trainers and breeders have considered endoscopic data when buying at sales. Selecting horses with better scoping data for racing and breeding is expected to reduce the risk of URT-related diseases and resulting surgeries. Breeders might realise additional reductions if they could also consider information on the variation in WS among progeny groups when making selection decisions. 
In 2018, the British Horse Racing Authority (BHA) introduced the requirement that trainers declare if a horse racing in Britain has had a WS since their previous race. This routinely collected field data may support the promising avenue of reducing WS by genetic selection. 

In this article, we discuss the different types of surgeries, the use of endoscopic examinations and the opportunities and challenges of leveraging WS declarations for genetic selection.

Wind Surgeries

The term ‘wind surgery’ encompasses the following surgical procedures:

  • Tie-back, also known as a prosthetic laryngoplasty. This is utilised for the treatment of roarers, also known as recurrent laryngeal neuropathy (RLN). 

  • Hobday procedure, also known as a ventriculectomy or ventriculocordectomy. This is also utilised in the treatment of roarers and is frequently performed in conjunction with a tie-back procedure. 

  • Tie-forward, for the treatment of dorsal displacement of the soft palate (DDSP)

  • Soft palate cautery, for the treatment of DDSP.

  • Epiglottic entrapment surgery, for the treatment of epiglottic entrapment (EE).


Wind surgeries can have welfare implications, for example, if a horse suffers post-surgical complications such as infection or difficulty swallowing. Wind surgeries can also have significant financial implications due to the cost of the surgery itself and the potential loss of earnings due to time off for the procedure. Many WS procedures have widely reported high success rates; for example, it is realistic to expect horses undergoing a tie-back procedure to have success rates of 70-80%, a figure considered to be irrespective of the degree of RLN present. However, no surgical procedure is 100% effective in treating their respective upper airway condition. This means that a certain percentage of horses requiring WS will not return to the same pre-athletic ability they had prior to disease development, again having financial implications on a horse’s potential winnings.

Information on the proportion of racehorses that have had a WS is scarce. To get a preliminary estimate, we studied the WS declarations of 1,000 randomly selected racehorses that ran in Britain between January and May 2024. In this sample approximately 15% of the horses have had at least one WS in their career. As expected, higher frequencies were found for horses in National Hunt races than in Flat races.

Endoscopic Examinations
Early detection of conditions requiring WS is difficult as they do not typically manifest in youngstock but instead frequently present during a horse’s athletic career. Thoroughbred racehorses typically present for surgical management of RLN at 2-3 years of age. Despite this, at most major thoroughbred yearling sales, individual animals undergo post-sale URT endoscopic examinations to assess for disease processes affecting the upper airways, including RLN, DDSP and EE amongst several other conditions. The presence of any one of these disease processes allows for the prospective purchaser to cancel the sale.

Several studies have found a relationship between endoscopic observations in yearlings, particularly the incidence and severity of laryngeal pathologies such as RLN, and later racing performance. The most recent study examined 1,244 Australian thoroughbred yearlings’ URT endoscopic examinations and suggests that resting laryngeal function, associated with the degree of RLN, can be a useful predictor of future racing performance and earning potential. For example, the mean earnings of yearlings graded with a ‘normal’ larynx (condensed Lane scale) was AU$20,100 (£10,453 / €12,271) whereas it was only AU$1,000 (£520 / €610) for those graded with an ‘abnormal’ larynx. 

Although the URT endoscopic data set collected from yearling sales has many valuable applications, these are typically more pertinent to purchasing recommendations and is unlikely to be used for large-scale genetic evaluations. 

Genetic evaluation of WS 

The feasibility of genetic evaluation based on routinely reported WS data largely depends on the presence of natural genetic variation, which may differ per individual surgeries. Heritability estimates, indicating the relative contribution of genetics, for the individual surgeries are not yet known. However, moderate to high heritabilities have been reported for RLN, one of the conditions often requiring WS. Several studies have reported a positive genetic correlation between height and RLN, with taller horses having an increased risk of RLN development. It has been hypothesised that selecting against these genes could result in a shorter population of horses which may impact on athletic performance. Although the exact mode of inheritance remains largely unknown, it is speculated to be polygenic, with numerous genes contributing incrementally to the overall genetic variation and development of RLN. We generally also assume that genes from both parents on average contribute equally to the risk of RLN. Research into the genetic components of DDSP and EE is very scarce.

Once the genetic variation of WS data has been confirmed, breeding organisations can develop statistics indicating the genetic quality of individual horses. A first possible step in this direction might be publishing the average WS incidence for commonly used sires. A more advanced step might be a genetic evaluation based on WS data and pedigree. Such statistical procedures, already routinely implemented in many livestock breeding programmes, optimally combine family information and adjust for non-genetic effects such as age and sex. Breeders can use the resulting estimated breeding values to better identify stallions and mares with a lower genetic risk for requiring WS. The reliability of an individual breeding value depends on the amount of data used, which is low for horses with no offspring and limited pedigree information but high for sires with many offspring. 

Another potential data source for breeders is DNA testing based on the relationship between mutations in the DNA and the inherited predisposition for WS. Although genome-wide association studies (GWAS) have identified variants that relate to RLN, their predictive value has been too low to develop and commercialise highly reliable DNA tests. However, the use of estimated breeding values based on field data may boost the power of ongoing GWAS studies to identify predictive variants.

Impact of genetic selection

Genetic selection operates as a long-term strategy, with noticeable improvements materialising in subsequent generations, albeit typically in modest increments. Nonetheless, experiences with breeding programmes in other livestock species, such as cattle, pigs and poultry, underscore the transformative potential of systematic selection in reshaping population dynamics over time. Unlike non-genetic interventions such as nutrition or training, the outcomes of genetic selection are permanent and cumulative. Moreover, genetic selection often proves cost-effective, especially when leveraging existing data collection practices. 

However, for the widespread adoption of genetic selection against WS within the industry, stakeholders' acceptance is crucial. While publishing breeding values fosters transparency and aids genetic progress, it may encounter resistance from some owners unaccustomed to such openness. Furthermore, given that many Thoroughbred breeders lack familiarity with rational selection based on breeding values, there is a risk of misguided expectations and insufficient support within the sector. Hence, collaborative efforts with stakeholders are imperative both in the development and utilisation of genetic metrics for health and welfare traits to ensure their integration into breeding practices.

Conclusion

The wealth of recorded WS field data in Britain, which was initially intended for the betting public, offers an exciting prospect for exploring its potential application in genetic evaluations. This dataset provides an unprecedented opportunity to reliably study the genetic variation of commonly occurring URT conditions requiring WS. Continued research into the components of the underlying operations, coupled with robust stakeholder engagement, holds promise for yielding valuable insights. Ultimately, such endeavours could empower breeders to implement strategies aimed at effectively mitigating the prevalence of WS within the Thoroughbred population.

References

  • Ahern, B.J., A. Sole, K. De Klerk, L.R. Hogg, S.A. Vallance, F.R. Bertin and S.H. Franklin, 2022. Evaluation of postsale endoscopy as a predictor of future racing performance in an Australian thoroughbred yearling population. Aust. Vet. J. 100: 254-260.

  • Boyko, A.R., S.A. Brooks, A. Behan-Braman, M. Castelhano, E. Corey, K.C. Oliveira, J.E. Swinburne, R.J. Todhunter, Z. Zhang, D.M. Ainsworth and N.E. Robinson, 2014. Genomic analysis establishes correlation between growth and laryngeal neuropathy in Thoroughbreds. BMC Genomics 15: 1-9.

  • Dixon, P.M., B.C. McGorum, D.I. Railton, C. Hawe, W.H. Tremaine, K. Pickles and J. McCann, 2001. Laryngeal paralysis: a study of 375 cases in a mixed‐breed population of horses. Equine Vet. J. 33: 452-458.

  • Ducharme, N.G. and F. Rossignol, 2019. Chapter 46: Larynx. In: J.A. Auer, J.A. Stick, J.M. Kümmerle and T. Prange. Equine Surgery (Fifth Edition) (pp. 734-769). Elsevier.

  • Dupuis, M.-C., Z. Zhang, T. Druet, J.M. Denoix, C. Charlier, P. Lekeux and M. Georges, 2011. Results of a haplotype-based GWAS for recurrent laryngeal neuropathy in the horse. Mamm. Gen. 22: 613-620.

  • Garrett, K.S., S.W. Pierce, R.M. Embertson and A.J. Stromberg, 2010. Endoscopic evaluation of arytenoid function and epiglottic structure in Thoroughbred yearlings and association with racing performance at two to four years of age: 2,954 cases (1998–2001). J. Am. Vet. Med. Assoc. 236: 669-673.

  • Hawkins, J.F., 2014. Advances in equine upper respiratory surgery. John Wiley & Sons.

  • Herdan, C., B. McGivney, K. Gough, E. Hill and L. Katz, 2014. A Single Nucleotide Polymorphism (BIEC2-808543) on Eca3 is associated with Recurrent Laryngeal Neuropathy independent of height in Thoroughbred horses. Equine Vet J. 46: 34.

  • Ibi, T., T. Miyake, S. Hobo, H. Oki, N. Ishida and Y. Sasaki, 2003. Estimation of heritability of laryngeal hemiplegia in the Thoroughbred horse by Gibbs sampling. J. Equine Sci. 14: 81-86.

  • Miller, S.M., 2020. Endoscopic recurrent laryngeal neuropathy grade prevalence in a sample of thoroughbred yearlings at public auction in South Africa (2013–2019). J. S. Afr. Vet. Assoc. 91: 1-5.