Nutrition - supporting the recovery process to improve performance - Train, Race, Recover, Repeat

Article by Dr Andy Richardson BVSc CertAVP(ESM) MRCVS

Introduction

Horses evolved as herd-living herbivores with a digestive tract designed to cope with a near continuous dietary input of forage in the form of a wide range of plant species. A large hindgut acts as a fermentation vessel where gut microbiota (predominantly a mix of bacteria, protozoa and fungi) exist in harmony with the horse in order to digest the fiber rich plant material.

Fiber is important to the horse for several reasons. The digestion of fiber releases energy and other key nutrients to the horse. Fiber also acts to provide bulk in the digestive tract, thus helping maintain the passage of fecal material through the system. Fiber also acts like a sponge to absorb water in the gut for release when required.

As horses became domesticated and used for work or sporting purposes, more energy-dense feeds in the form of cereal grains were introduced to their diet, as simple forage did not provide for all the caloric requirements. Cereal grains are rich in starch, which is an energy-dense form of nutrition. However, too much starch can cause problems to a digestive tract that remains designed for a pasture-based diet. The issues that can be caused by the trend away from a solely pasture-based diet can be digestive, behavioral or clinical.

Nonetheless, the combination of forage and cereal-based concentrates remains the mainstay approach for the majority of horses in training today, in order to maximize performance. A great deal of research and expertise are utilized by the major feed companies to ensure that modern racehorse concentrate feeds provide adequate provision of the major nutrients required and minimize unwanted effects of starch in the diet.

This article aims to discuss some scenarios where targeted or supplemented nutrition can act to help overcome some of the nutritional challenges faced by the modern horse in training, as they “Train, Race, Recover and Repeat.”

Equine Gastric Ulceration Syndrome (EGUS)

EGUS occurrence in racehorses is well documented, with prevalence shown to be over 80% in horses in training (Vatistas 1999). With a volume of approximately 2–4 gallons (7.53–15 liters), the stomach in horses is relatively small compared to their overall size due to its functional role in accommodating trickle feeding that occurs during their natural grazing behavior. 

As a horse chews, it produces saliva, which is a natural buffer for stomach acid. When the horse goes for a period of time without chewing, the production of saliva ceases, and stomach acid is not as effectively neutralized. The lower half of the stomach is better protected from acid due to its more resistant glandular surface. The upper, or squamous, region does not have such good protection, however, and this can be a problem during exercise when acid will physically splash upwards, potentially leading to gastric ulceration.

In practice, this can present a challenge for horses in training. Typically, they will be fed a concentrate-based feed in the early morning that stimulates a large influx of acid in order to help digest the starch. This may be followed by a period without ad-lib access to hay, thus reducing the amount of saliva subsequently produced to act as a buffer. When the horse is subsequently worked, there is a risk of acid damaging the upper squamous region of the stomach. There is some evidence to suggest that the provision of hay in advance of exercise may act like a sponge for the acid, as well as helping form a fibrous matt to minimize upward splash.

Gastric ulceration can go undetected in horses in training and may not lead to any obvious clinical signs. In other horses, it can lead to colic, poor appetite, dull coat and behavioral changes. In both scenarios, it is likely that the ulceration will have an impact on their performance, with decreased stride length, reduced stamina and inability to relax at speed all being possible consequences (Nieto 2009). Gastric ulceration can therefore have a significant impact on the ability of a horse to perform optimally day in day out in a training environment. This is exacerbated when ulceration leads to a reduction in appetite, with the obvious downside of a reduction in calorie intake leading to condition loss and further drop in performance.

This is an area where targeted nutrition has been clinically proven to play an important role. Ingredients such as pectin, lecithin, magnesium hydroxide, live yeast, calcium carbonate, zinc and liquorice have all been studied as having beneficial effects on gastric ulceration (Berger 2002, Loftin 2012, Sykes 2013). It is likely that a combination of the active ingredients will be most efficacious, with benefits noted when the supplement is added to the feed ration to help neutralize acid and form a gel-like protective coating on the stomach surface.

The daily administration of a targeted gastric supplement can be an important part of daily nutrition of the horse in training, alongside the use of pharmaceuticals such as omeprazole or esomeprazole when required.

Sweat loss

Horses have one of the highest rates of sweat loss of any animal, with sweat being comprised of both water and electrolyte ions such as sodium, potassium, chloride, magnesium and calcium. Therefore, it is not surprising that horses in training are at risk of unwanted issues should sweat loss not be replaced.

It is also worth noting that transportation can also lead to excessive sweat loss, with studies showing sweat rates of 5 liters per hour of travel on a warm day (van den berg 1998).

If the electrolytes lost in sweat are not adequately replaced, a drop in performance can result, as well as clinical issues such as thumps, dehydration and colic.

Electrolytes play key roles in the contraction of muscle fibers and transmission of nerve impulses. Horses without adequate electrolyte levels are at risk of early onset fatigue that may result in reduced stamina. It is also worth noting that horses that train on furosemide will have higher levels of key electrolyte losses, so will require targeted support to help maintain performance levels (Pagan 2014).

There is also evidence to suggest that pre-loading of electrolytes may be beneficial (Waller 2022). For horses in daily work, the addition of electrolytes to the evening feed will not only replace losses but also help optimize levels for the following day’s travel or race. The benefit of providing electrolytes with feed is that it will minimize the risk of the electrolyte salts irritating the stomach lining, which can occur if given immediately after exercise on an empty stomach. Feeding electrolytes when the horse is relaxed back in the stable will also allow them to drink freely, with the added benefit that electrolytes will stimulate the thirst reflex when they are relaxed, ensuring they are adequately hydrated for the following day.

Products should be chosen on the basis of adequate key electrolyte provision as not all products will provide meaningful levels of all the key electrolyte ions.

Muscle soreness

The process of muscle breakdown and repair is a normal adaptive response to training. This process can lead to inflammation and soreness or stiffness after exercise. In humans, there is a well-recognized condition called Delayed Onset Muscle Soreness (DOMS).

Further research is required to fully understand the impact of DOMS in horses. DOMS is the muscular pain that develops 24–72 hours after a period of intense exercise. There is no pain felt by the muscles at the time of exercise, in contrast to a ‘torn muscle’ or ‘tying-up’ for example.

In humans, DOMS is thought to be the result of tiny microscopic fractures in muscle cells. This happens when doing an activity that the muscles are not used to doing or have done it in a more strenuous way than they are used to.

The muscles quickly adapt to being able to handle new activities, thus avoiding further damage in the future; this is known as the “repeated-bout effect”. When this happens, the micro-fractures will not typically develop unless the activity has changed in some substantial way. As a general rule, as long as the change to the exercise is under what is normally done, DOMS are not experienced as a result of the activity.

In practice, avoiding any post-exercise muscle soreness in a training programme may be unavoidable, as exercise intensity and duration increases. Horses are far from being machines, so there is a fine balance between a programme that gets a horse fit for purpose without some post-exercise muscle discomfort. Physiotherapy, swimming and turnout will all likely benefit horses experiencing muscle discomfort. Whilst non-steroidal anti-inflammatories will always have their place for horses in training, one area of advancement is the use of plant-based phytochemicals to support the anti-inflammatory response (Pekacar 2021). These may have the benefit of not leading to unwanted gastrointestinal side effects and not having prolonged withdrawal times, although this should always be checked with any supplement particularly with the recent update regarding MSM.

Exercise will also lead to a process of muscle cell damage caused by oxidative stress. This is an inflammatory process and recovery from oxidative stress is key to allow for muscle cell repair and growth. Antioxidants are compounds that help recovery and repair of muscle cells following periods of intense exercise. The process of oxidative stress in muscle cells can lead to muscle fatigue and inflammation if left unsupported. Antioxidant supplementation in the form of Vitamin E or plant-based compounds can help protect against excessive oxidative stress and support muscle repair after exercise (Siciliano 1997).

Conclusion

Nutritional management of horses in training is a complex topic, not least as every horse is an individual and so often needs feeding accordingly. Whilst there is a lot of science available on the subject, the ‘art of feeding’ a racehorse—something that trainers and their staff often have in-depth knowledge of— remains an incredibly important aspect. Targeted nutritional supplements undoubtedly have their place, as discussed in, but not limited to, the scenarios above. 

Veterinarians, physiotherapists, other paraprofessionals and nutritionists all play a role in minimizing health issues and maximizing performance. In the quest for optimal performance on the track, nutritional support is one of the cornerstones of the ‘marginal gains’ theory that has long been adopted in elite human athletes. There is no doubt that racehorses themselves are supreme athletes that live by the mantra of Train, Race, Recover, and Repeat.


References

Berger, S. et al (2002). The effect of acid protection in therapy of peptic ulcer in trotting horses in active training. Pferdeheilkunde 27 (1), 26-30,

Loftin, P. et al (2012). Evaluating replacement of supplemental inorganic minerals with Zinpro Performance Minerals on prevention of gastric ulcers in horses. J.Vet. Int. Med. 26, 737-738

McCutcheon, L.J. and geor R.J. (1996). Sweat fluid and ion losses in horses during training and competition in cool vs. hot ambient conditions: implications for ion supplementation. Equine Veterinary Journal 28, Issue S22.

Nieto, J.E. et al (2009). Effect of gastric ulceration on physiologic responses to exercise in horses. Am. J. Vet. Res.70, 787-795.

Pagan, J.D. et al (2014). Furosemide administration affects mineral excretion in exercised Thoroughbreds. In: Proc. International Conference on Equine Exercise Physiology S46:4.

Pekacar, S. et al (2021). Anti-Inflammatory and Analgesic Effects of Rosehip in Inflammatory Musculoskeletal Disorders and Its Active Molecules. Curr Mol Pharmacol. 14(5), 731-745.

Rivero, J.-L.L. et al (2007). ‘Effects of intensity and duration of exercise on muscular responses to training of thoroughbred racehorses’. Journal of Applied Physiology 102(5), 1871–1882.

Siciliano, P.D. et al (1997). Effect of dietary vitamin E supplementation on the integrity of skeletal muscle in exercised horses. J Anim Sci.75(6), 1553-60.

Sykes, B. et al (2013). Efficacy of a combination of a unique, pectin-lecithin complex, live yeast, and magnesium hydroxide in the prevention of EGUS and faecal acidosis in thoroughbred racehorses: A randomised, blinded, placebo-controlled clinical trial. Equine Veterinary Journal, 45, 16.

van den Berg, J. et al (1998). Water and electrolyte intake and output in conditioned Thoroughbred horses transported by road. Equine Vet J. 30(4), 316-23.

Vatistas, N.J. et al (1999) Cross-sectional study of gastric ulcers of the squamous mucosa in thoroughbred racehorses. Equine Vet J Suppl. 29, 34–39.

Waller, A.P., and M.I. Lindinger. (2022). Tracing acid-base variables in exercising horses: Effects of pre-loading oral electrolytes. Animals (Basel) 13(1), 73.